
JJMIE 
Volume 5, Number 3, June  2011 

ISSN 1995-6665 

Pages 199 - 212 

Jordan Journal of Mechanical and Industrial Engineering  

 

Formation of Machine Cells/ Part Families in Cellular Manufacturing 

Systems Using an ART-Modified Single Linkage Clustering 

Approach – A Comparative Study 

M. Murugan*,a, V. Selladurai 
b
 

aDepartment of Mechanical Engineering, SNS College of Technology, Coimbatore-641035, Tamilnadu, India 
bDepartment of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore-641014, Tamilnadu, India.

                                                           
* Corresponding author. e-mail: murugan_srec@yahoo.co.in 

 

 

Abstract 

This paper proposes an Art Modified Single Linkage Clustering approach (ART-MOD-SLC) to solve cell formation 
problems in Cellular Manufacturing. In this study, an ART1 network is integrated with Modified Single Linkage Clustering 
(MOD-SLC) to solve cell formation problems. The Percentage of Exceptional Elements (PE), Machine Utilization (MU), 
Grouping Efficiency (GE) and Grouping Efficacy (GC) are considered as performance measures. This proposed heuristic 
ART1 Modified Single Linkage Clustering (ART-MOD-SLC) first constructs a cell formation using an ART1 and then 
refines the solution using Modified Single Linkage Clustering (MOD-SLC) heuristic. ART1 Modified Single Linkage 
Clustering has been applied to most popular examples in the literature including a real time manufacturing data. The 
computational results showed that the proposed heuristic generates the best solutions in most of the examples. The proposed 
method is compared with the well-known clustering approaches selected from the literature namely ROC2, DCA, SLC and 
MOD-SLC. Comparison and evaluations are performed using four performance measures. Finally analysis of results is 
carried out to test and validate the proposed ART-MOD-SLC approach.   The MCF methods considered in this comparative 
and evaluative study belong to the cluster formation approaches and have been coded by using C++ with an Intel P-IV 
compatible system.  

© 2011 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved 
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1. Introduction 

In the competitive business environment today, many 

businesses focus attention especially on the rapidity for 

responding to their customers’ needs. For this reason, 

continuous improvements are needed to increase response 

times to customer changes. One of the strategies is called 

Group Technology which focuses on Cellular 

Manufacturing.                  Group technology (GT) is a 

manufacturing philosophy that has attracted a lot of 

attention because of its positive impacts in the batch-type 

production. The problems in batch manufacturing are high 

level of product variety and small manufacturing lot sizes                      

(Singh and Rajamani 1996). In the design of a CM system, 

similar parts are grouped into families and associated 

machines into groups so that one or more part families can 

be processed within a single machine group. The process 

of determining the part families and machine groups are 

referred to as the cell formation (CF) problem. Group 

technology is a tool for organizing and using information 

about component similarities to improve the production 

efficiency of manufacturing firm. Successful application of 

group technology, promises improvement of productivity 

through the reduction of material handling cost, throughput 

time etc.  

The two major tasks that the company must undertake 

are (a) Identification of part families: if the plant makes 

10,000 different parts, reviewing all the part drawing and 

grouping the parts into families is a substantial task that 

consumes a significant amount of time. (b) Rearranging 

production machines into machine cells: It is time 

consuming and costly to plan and accomplish this 

rearrangements and machines are not producing during 

change over. GT offers a substantial benefit to companies 

that have the perseverance to implement it. Formation of 

machine cells is one of first important steps in the 

development and implementation of GT. New 

achievement in computer technology and artificial 

intelligence have provided the opportunity to apply more 

advanced clustering technique to group technology 

problem.  

The ART1 neural network is a novel method for the 

cell formation problem in-group technology. ART1 is an 

unsupervised network where the desired output (desired 

number of clusters) is not known. Cluster formation is 

dependent on the vigilance parameter value as well as the 

number of machines and parts present in an input 

incidence matrix. Iteration taken by ART1 for cluster 
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formation also depends on size of input of the incidence 

matrix and group efficiency. After forming a cell or a 

cluster of machines or parts, Modified Single Linkage 

Clustering (MOD-SLC) is used to obtain the optimized 

part family or machine cell according to its maximum use 

in a cluster. 

2. Literature Survay 

Detailed survey of literature has been carried out to 

identify the findings and directions given by the 

researchers. The contributions and directions of selective 

research works reported in the literature have been 

presented below. The literature yields seven             array-

based clustering heuristics, namely:   1. Bond Energy 

Analysis (McCormick et al [1]); 2. Rank Order Clustering 

(King, [2]; King et al. [3]); 3. Modified rank order 

clustering (Chandrasekharan et al. [4]); 4. Direct clustering 

analysis (Chan et al. [5]); 5. Occupancy Value Method 

(Khator et al. [6]); 6. Cluster Identification Method 

(Kusiak et al. [7]); and 7. Hamiltonian Path Heuristic 

(Askin et al., [8]). The SLC method (McAuley, [9]; Carrie, 

[10]; Waghodekar et al., [11]) merges clusters based on the 

maximum similarity of their members. Chandrasekharan et 

al. [12] analyzed the performance of the grouping 

efficiency in evaluating the solution qualities of a set of 

well-structured and ill-structured problems. The deficiency 

of the grouping efficiency has been investigated by Kumar 

et al.  [13]. Chu et al. [14] compared three array-based 

machine-part grouping methods: ROC, DCA and BEA. 

Murugan and Selladurai (15) compared three array-based 

cell formation methods on a real time manufacturing data. 

Miltenburg and Zhang [16] compared nine cell formation 

methods including similarity measure method, non-

hierarchical clustering and rank order methods.                                   

Cheng C.H. et al. [17] carried out comparative 

examination of selected cellular manufacturing clustering 

algorithms.  Dimopoulos et al. [18] used the grouping 

efficacy performance measure in evaluating and 

comparing a genetic programming based SLC method to 

five other procedures. The following neural network 

models have been used to solve the machine and/or part 

grouping problems: back propagation network   (Kaparthi 

et al. [19]), self-organizing network (Lee et al. [20]). 

Adaptive Resonance Theory (ART) (Dagli et al. [21], 

Kusiak et al. [22]. There are several variations of an ART 

network, namely, ART1 (Carpenter et al. [23, 24]), ART2 

(Carpenter et al. [25]). The ART1 can handle binary input 

patterns, while others can process both binary and 

analogue. Kusiak. A, et al. [26] addressed on neural 

networks to form machine cells to map the concept of 

machine cell formation onto the network.                                 

Akturk et al. [27] proposed an integrated algorithm 

that solves the machine/product-grouping problem by 

simultaneously considering the within-cell layout problem.                           

Charles C. Willow [28] proposed a feed forward multi-

layer neural network for machine cell formation in 

computer integrated manufacturing. Hark Hwang et al. 

[29] proposed another measure to enhance the 

performance of the model using p-median model. [30] 

Baroni et al. proposed on Similarity on binary data. Yong 

Yin et al. [31] compared the performance of 20 well-

known similarity coefficients. Yong Yin et al. [32] 

developed a comprehensive overview and discussion for 

similarity coefficients. Prabahakaran et al. [33] addressed 

on an application of the maximal Spanning Tree approach 

for machine cell formation. Chang-Chun Tsai et al. [34] 

proposed a multi-functional MP model. Alhourani Farouq 

et al. [35] proposed a new ordinal production data 

similarity coefficient based on the sequence of operations 

and the batch size of the parts. Logendran et al. [36] 

proposed a nonlinear programming model, comprised of 

binary and general integer variables. Mingyuan, et al. [37] 

proposed an integrated model for production planning in 

cellular manufacturing (CM) systems. Zahir Albadawi et 

al. [38] proposed a new mathematical approach for 

forming manufacturing cells.  

Mahdavi et al. [39] proposed a heuristic method based 

on iterative set partitioning for incremental cell formation 

where part of the operations can be processed on 

alternative machines.  Mahdavi et al. [40] proposed on 

minimizing of the Exceptional Elements (EE) and number 

of voids in cells to achieve the higher performance of cell 

utilization. Bin Hu et al. [41] developed an integrated 

method to solve a multi objective cell formation problem 

that consists of an integer programming model and a 

heuristic algorithm for generating alternative cell 

formations. Steudel et al. [42] developed a similarity 

measure known as the Cell Bond Strength (CBS) which 

depends on part routing and production requirements.  

Harhialakis et al [43] proposed a two-stage heuristic 

algorithm to solve the cell formation problem. Sule [44] 

developed a procedure to determine the number of 

machines. Okogba et al [45] developed an algorithm to 

solve the part-machine cell formation problem. Heragu et 

al. [46] presented a heuristic method for forming part 

families and machine groups. Lin et al [47] proposed a two 

stage integer-programming model for forming part-

machine cells.  

Hassan M. Selim et al. [48] compared a modified 

single linkage clustering heuristic (MOD-SLC) against the 

three well-established machine cell formation methods.  

Adenso-Díaz, et al. [49] proceeded on part-machine 

grouping using weighted similarity coefficients. Foulds et 

al [50] proposed an approach to solve manufacturing cell 

creation with machine modification costs and the objective 

is to minimize the sum of the machine modification cost. 

Peker et al. [51] proceeded on parameter setting of the 

Fuzzy ART neural network to part-machine cell formation 

problem. Gajendra K. Adil et al. [52] proposed an 

enhanced diversity/similarity model to form part families. 

Venkumar et al. [53] addressed on Fractional cell 

formation in group technology using modified ART1 

neural networks. Venkumar et al. [54] proposed the cell 

formation and fractional cell formation using Kohonen 

Self-Organizing Map (KSOM) neural networks.  

While conducting the detailed literature survey, it has 

been found at many cell formation methods have been 

used to reduce the percentage of exceptional elements (PE) 

and to increase the grouping efficiency (GE). The results 

of the literature survey indicated the absence of an analysis 

on cell formation methods using the real time data to 

predict the performance. The findings of the literature 

survey highlighted that there is a wide scope for solving 

the cell formation problem towards achieving the optimal 

performance. A suitable new integrated approach is 

proposed and applied for analysing the performance 

measures by incorporating the ART1 neural network with 

modified single clustering algorithm (ART-MOD-SLC). 

The remainder of this paper is organized as follows. 

Section 3 discusses the statement of the problem and 

Section 4 discusses about the existing clustering 

algorithms with examples and section 5 introduces a new 
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integrated ART- MOD-SLC approach with numerical 

examples are presented to compare with other approaches 

in the literature. Finally, the conclusions are given in 

Section 6. 

 

3. Problem Definition 

Batch manufacturing is a dominant manufacturing 

activity in the world, generating great deal of industrial 

output. It accounts for 60 to 80 percent of all 

manufacturing activities. The major difficulties in batch 

manufacturing are due to high level of product variety and 

small manufacturing lot sizes. The product variations 

present design engineers with the problem of designing 

many different parts. The impact of these product 

variations in manufacturing is high investment in 

equipment, high tooling costs, complex scheduling and 

loading, lengthy setup time and costs, excessive scrap, and 

high quality control costs. For this purpose, some 

innovative methods are needed to reduce product cost and 

lead time and profitability. It needs a higher level of 

integration of the design and manufacturing activities in a 

company. Group technology (GT) provides such a link 

between design and manufacturing. 

 

4. Methodology 

4.1. Rank order clustering 2 (ROC2): 

 

ROC is a well-known clustering technique that attempts to 

create a block diagonal form by repeatedly reallocating the 

columns and rows of a machine/part matrix according to 

binary values. ROC-2 was developed by King and 

Nakornchai (1982) to overcome the limitations of ROC. 

This algorithm is a faster and more efficient method 

compared with ROC. The main feature of ROC-2 is that it 

can identify block diagonal structure (of a machine part 

incident matrix) very quickly that makes it practicable to 

use in an interactive manner even for large matrices. The 

step-by-step procedure is shown in the Figure 1. 

 

4.1.1. Algorithm: 

 

Step 1: Start from the last column, move the rows with 

positive entries to the top of the matrix. 

Step  2: Repeat step1 for all the columns. 

Step 3: Start from the last row, move the columns with 

positive entries to the left of the matrix. 

Step 4:  Repeat step 3 for all rows. 

Step 5: Compare the matrix with the previous result. If the 

matrices are different go to step otherwise go to step 6. 

Step 6: Print the final machine-component incidence 

matrix. 

 

 

 

 

 

 

Flow Chart.  

 

 
 
Figure 1: Flow Chart of Rank Order Clustering -2 (ROC-2). 

 

4.1.2. Rank order clustering-2 (ROC-2) example: 

 

Table 1: Initial Machine-Part Matrix of ROC-2. 

 

a. Initial Metrix. 

 
 

M/C 

Parts 

1 2 3 4 5 6 7 8 

1 1  1      

2 1 1   1 1 1 1 

3   1  1  1 1 

4    1  1   

5 1  1  1 1  1 

6   1   1   

7 1 1   1 1 1 1 

b. Row Ordering. 

Columns Row order 

8 1 2 3 4 5 6 7 

7 2 3 5 7 1 4 6 

6 2 7 1 4 6 3 5 

5 2 7 3 5 1 4 6 

4 5 2 7 3 1 4 6 

3 1 4 6 5 2 7 3 

2 5 3 1 4 6 2 7 

1 1 2 7 5 3 4 6 

Final 2 5 7 1 3 4 6 
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c. Column Ordering 
Rows Column order 

6 1 2 3 4 5 6 7 8 

4 4 7 1 2 3 5 6 8 

3 4 7 1 2 3 5 6 8 

1 3 6 8 4 7 1 2 5 

7 4 7 2 3 6 8 1 5 

5 7 6 8 1 4 2 3 5 

2 6 8 1 3 5 7 4 2 

Final 6 8 1 2 3 5 7 4 

 

Table 2: Final Matrix of ROC-2. 

 

 

 

M/C 

Parts 

6 8 1 7 2 3 5 4 

2 1 1 1 1 1    

7 1 1 1 1 1    

5 1 1 1   1 1  

3 1 1    1   

1    1 1   1 

4    1    1 

6    1    1 

 

4.2. Direct clustering analysis (DCA): 

 

In the DCA algorithm, the initial matrix is rearranged 

according to the row and column assignments. After the 

rearrangement the rows and columns are rearranged to 

form the clustered machine component incidence matrix. 

 

 
Figure 2: Flow Chart of Direct Clustering Analysis. 

4.2.1. Algorithm 

 

Step 0: Input Machine component incidence matrix 

(MCIM) formed from the operation sequence of each part. 

Step 1: The row and column ranks are found by adding 

their corresponding positive entries. 

Step 2: The matrix is rearranged according to the ranks. 

Step 3: Start from the first row, move the columns with 

positive entries to the left of the matrix 

Step 4: Repeat the step 3 for all the rows. 

Step 5: Start from the first column, move the rows with 

positive entries to the top. 

Step 6: Repeat the step 5 for all the columns. 

Step 7: Compare the matrix with the previous result. If the 

matrices are different go to step 3 otherwise go to step 8. 

Step 8: Print the final machine component incidence 

matrix.  

4.2.2. Direct clustering analysis (DCA) example: 

 

M/C 

Parts 

1 2 3 4 5 6 7  

1  1  1   1 3 

2   1  1   2 

3 1 1  1   1 4 

4 1  1   1  3 

5   1 1 1 1  4 

 2 2 3 3 2 2 2  
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Counting the positive cells. 

M/C 

Parts 

6 5 4 3 7 2 1 

5 1 1 1 1    

3   1  1 1 1 

4 1   1   1 

1   1  1 1  

2  1  1    

 

Conducting column interchanges based on First row. 

M/C 

Parts 

7 6 5 2 1 4 3  

5  1 1   1 1 4 

3 1   1 1 1  4 

4  1   1  1 3 

1 1   1  1  3 

2   1    1 2 

 2 2 2 2 2 3 3  

Ranking rows in descending order and columns in 

ascending order. 

Freeze previous changes; continue the column 

interchanges based on the remaining until no further 

changes. 

 

M/C 
Parts 

6 5 4 3 7 2 1 

5 1 1 1 1    

4   1  1 1 1 

3 1   1   1 

1   1  1 1  

2  1  1    

 
Conducting row interchanges based on First column. 

 

4.3. Single linkage clustering: 

 

It is a hierarchical machine grouping method known as 

Single-Linkage Clustering using similarity coefficients 

between machines. The similarity coefficient between two 

machines is defined as the ratio of the number of parts 

visiting both machines and the number of parts visiting 

one of the two machines: 

 

 

(1) 

 

 

 

Where 

 

Xijk = operation on part k performed both on machine i 

and j, 

Yik = operation on part k performed on machine i, 

Zjk = operation on part k performed on machine j. 

 

 
Figure 3: Flow Chart of Single Linkage clustering. 

4.3.1. Single linkage clustering (SLC) Example: 

 

Table 3: Initial Matrix of SLC. 

 

M/C 

Parts 

1 2 3 4 5 6 7 8 

1  1  1     

2 1 1    1 1 1 

3   1   1  1 

4    1   1  

5 1  1  1 1  1 

6    1   1  

7 1 1    1 1 1 

 

Table 4: Similarity Matrix of SLC. 

 

Machine 

Machine 

1 2 3 4 5 6 7 

1  0.33  0.67  0.67 0.33 

2   0.33 0.17 0.43 0.17 1.00 

3     0.60  0.33 

4      1.00 0.17 

5       0.43 

6       0.17 

7        
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Table 5: Final Matrix of SLC. 

 

M/C 

Parts 

4 7 1 2 3 5 6 8 

4 1 1       

6 1 1       

1 1 1  1     

2  1 1 1   1 1 

7  1 1 1   1 1 

3     1  1 1 

5   1  1 1 1 1 

 

 
Figure 4: SLC Dendogram. 

 

4.4. Modified single linkage clustering: 

 

Similarity coefficients are either Jaccardian or non-

Jaccardian, with respect to the similarity coefficient. The 

Jaccardian similarity coefficients are expressed as a 

measure of level of matches, in which the number of 

matches (Xij) is divided by a normalized quantity usually 

represented by the expected number of matches. Non-

Jaccardian similarity coefficients have an additional term, 

the number of misses (Yij), appears in the numerator and 

then divided by the normalizing term. The status of the 

number of misses (Yij) in similarity coefficients applied to 

the CM problem is ambiguous. It refers to the number of 

parts not processed by either machine or the number of 

machines not needed by either part type. The researchers 

who adopted Jaccardian similarity coefficients assume that 

the similarity coefficients measure the degree of 

commonality between the two machines in terms of parts 

processed. Therefore, the number of misses does not 

contribute to the machine pair similarity coefficient. On 

the other hand, a significant part of the literature shows 

that Jaccardian similarity coefficients are unable to reflect 

the true values of similarity, as the Jaccardian measures do 

not consider the number of misses (Yij).  

 

 

 

 

 

 

 

 

Baroni-Urban and Buser (1976) defined a set of 

properties of similarity coefficients and applied these 

properties to the several similarity coefficients. There does 

not exist any similarity coefficient which follows all the 

properties defined by Baroni-Urban and Buser (1976). 

Islam and Sarker (2000) modified the properties proposed 

by Baroni- Urban and Buser (1976) and stated them as 

follows (Sij is the machine i and machine j similarity 

coefficient): 

 No mismatch, Sij→ 1 for Xi = Xj = 0. 

 Minimum matches, Sij→ 0 for Xij, Yij→ 0. 

 No match, Sij→ 0 for Xij, = 0. 

 Complete match, Sij = 1 for Xij = number of parts. 

 Maximum matches, Sij→ 1 for Xij + Yij→ number of 

parts. 

The similarity measure developed by Baroni- Urban 

and Buser (1976) - BUB measure has conformed to the 

five properties. This similarity coefficient has superior 

properties of distribution compared to other coefficients 

because the distribution of its values is more normal and 

continuous and the BUB similarity coefficient is defined as 

follows: 

 

 

(2) 

Where SBij = BUB similarity between machine i and 

machine j, 0 ≤ SBij ≤ 1. In order to justify the application 

of non- Jaccardian similarity coefficients to the MCF 

problem, Islam and Sarker (2000) used properties 2 and 5 

to conclude that both matches (Xij) and misses (Yij) must 

be included in the numerator of the defining similarity 

coefficient. To satisfy properties 2, 3, 4, and 5, the product 

Xij Yij is considered in addition to Xij in the numerator. 

The square root is used to maintain the order consistency 

(Baroni-Urban and Buser, 1976). When there are no 

misses (Yij = 0), BUB measure is reduced to Jaccard’s 

measure which is the ratio of the number of parts 

processed by both machines to the total number of parts 

processed by both or one of the machines.  

If (Yij) the BUB coefficient value increases to reflect 

the real similarity of machine/part pairs. Islam and Sarker 

(2000) modified BUB measure by adding the number of 

misses (Yij) to the denominator and called it ‘relative 

matching measure’. The Jaccard measure has conformed to 

only three out of the same five properties namely, 

properties 1, 3 and 4. 

 

 
Figure 5: Flow chart of MOD-SLC. 
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4.4.1. MOD-SLC Example: 

 

Table 6: Initial machine component incidence matrix. 

 
 

Table 7: Similarity Co-efficient Matrix of MOD-SLC. 

M/C 1 2 3 4 5 6 7 

1 0 0.33 0 0.62 0 0.62 0.33 

2   0.5 0.5 0.54 0.5 1 

3    0 0.75 0 0.5 

4     0 1 0.33 

5      0 0.54 

6       0.33 

7       0 

 

 
 

Xij = 1 ; Yij = 2; Xi = 1; Xj = 4 

 
Table 8: Final Matrix of MOD-SLC. 

 
 

 
Figure 6: MOD-SLC Dendogram. 

5. Proposed ART-MOD-SLC Approach  

A cell formation problem can be viewed as a clustering 

problem that parts with similar machine operation can be 

grouped into same cluster. There are several neural 

networks that can be used to solve the clustering problem. 

In this research work, the application of ART for the 

machine cell/ part family clustering has been 

demonstrated. The ART1 network accepts an input vector 

X = {xi, i = 1, 2,…….N} directly from a binary machine 

part incidence matrix and assigns it to a cluster whose 

classified parts match with the input vector. Then, a 

vigilance test is carried out to determine whether the input 

vector meets the expectation or not. If input vector passes 

the test it is accepted as a member of cluster and the set of 

weights associated with the cluster are changed. 

The problem of cluster formation methods uses a 

different strategy for cluster formation; their relative 

performance has often been compared in terms of the 

number of inter-cell moves they generate. The MCF 

problem cluster analysis-based solution approaches consist 

of two phases. The first step is to develop an ART network 

for clustering the raw data (Machine Part Incident Matrix) 

and the second phase is to apply a solution methodology to 

solve the MCF problem. 

 

5.1. Architecture of ART-MOD-SLC: 

 

The figure below shows the architecture of ART-

MOD-SLC: 

 
Figure 7: Architecture of ART-MOD-SLC. 

 

5.2. ART-MOD-SLC algorithm: 

 

The ART-MOD-SLC algorithm is explained in detail 

as below and also shown in the flow chart -Figure 8 

Step 0: Define the number of neurons in input layer Nin 

and the number of neurons in the output layer Nout and 

select the value of vigilance parameter ρ between 0 and 1. 
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Nin = the number of columns of machine part incidence 

matrix.  

Nout = the maximum expected number of machine cells. 

 

Step 1: Enable all output units and initialize top down 

weights Wt and bottom up weights Wb. 

 

Wt = 1 (3) 

 

Wb =  

)1(

1

inN

 (4) 

 

Wt = Top down weights from neuron j in output layer to 

neuron i in input layer.  

Wb = Bottom up weight from neuron ‘i’ in the input layer 

to neuron ‘j’ in output layer. 

Where, Netj is the output of neuron j in output layer. 

Step 2: Present a machine vector X to input layer, X 

consists of zero/one elements. 

Step 3: Compute-matching scores for all the enabled 

output nodes. 

 

 
Figure 8: Flow chart of ART – MOD – SLC. 

 
Step 4: Select the node with the largest value of matching scores 

as best matching exemplar, let this node be j. in the event of tie, 

the unit on left side is selected.   
 

Net = ΣWbji+xi (5) 

 
Step 5: Perform vigilance test to verify that input pattern X 

belongs to cluster (cell). 

 
Netj = max {Netj} (6) 

 

Step 6: Disable the best matching exemplar. Since the vector x 
does not belong to cluster j the output of node j selected in step 3 

is temporarily disabled and removed from future competitions; Go 
to step 2. 

 

Step 7:  Adapt the best matching exemplar. 

 

Wtij = Wtij *xi                                 (7) 

 
t

ij it

ij t

ij

W *X
W

0.5 W *X




 
(8) 

Step 8: Using the best matching exemplar obtained from the step 

7, create the machine similarity matrix by calculating SBij for all 

machine pair. 

Step 9: Locate the Max SBij in machine similarity matrix, are i 

and j are assigned to two clusters. 

Step 10: By eliminating SBij in machine similarity matrix, merge 

the two clusters into one cluster. 

Step 11: Check all the machines are assigned to one cluster then 

print the final machine component incidence matrix if not go to 
step 9. 

5.2.1. ART-MOD-SLC Examples: 

 

Example 1: 

 

Table 9: Initial Matrix of ART-MOD-SLC (Final Matrix of 

ART1). 

M/C 
Parts 

1 2 3 4 5 6 7 8 class 

1 0 1 0 1 0 0 0 0 0 

2 1 1 0 0 0 1 1 1 1 

3 1 1 0 0 0 1 1 1 1 

4 0 0 1 0 0 1 0 1 2 

5 0 0 0 1 0 0 1 0 3 

6 0 0 0 1 0 0 1 0 3 

7 1 0 1 0 1 1 0 1 4 

 

Table 10: Similarity Co-efficient Matrix of ART-MOD-SLC. 

M/C 1 2 3 4 5 6 7 

1  0.33 0.33 0 0.62 0.62 0 

2   1 0.5 0.33 0.33 0.54 

3    0.5 0.33 0.33 0.54 

4     0.75 0 0.75 

5      1 0 

6       0 

7        

 

Example Calculation: 

 

 
 

Xij = 1; Yij = 2; Xi = 1; Xj = 4 
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Table 11: Final Matrix of ART-MOD-SLC. 

M/C 

Parts 

6 3 8 5 1 7 4 2 

2 1 0 1 0 1 1 0 1 

3 1 1 1 0 0 0 0 0 

4 0 0 0 0 0 1 1 0 

7 1 0 1 1 1 1 0 1 

5 1 1 1 0 1 0 0 0 

6 0 0 0 0 0 1 1 0 

1 0 0 0 0 0 0 1 1 

 

 
Figure 9: ART-MOD-SLC Dendogram. 

 

Example 2: 

 

Table 12 : Initial machine component incidence matrix 

M/C 
Parts 

1 2 3 4 5 6 7 8 9 10 

1 1 0 0 1 0 1 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 1 

3 0 1 0 0 0 0 1 0 1 1 

4 0 0 0 0 0 0 0 0 1 1 

5 0 0 1 0 0 0 0 0 0 0 

6 0 0 1 0 0 0 0 1 0 0 

7 0 0 0 0 1 1 0 0 0 0 

8 0 1 0 0 0 0 1 0 1 0 

9 0 0 0 0 0 0 0 1 0 0 

10 1 0 0 0 1 1 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

Table 13: Final Matrix of ART MOD-SLC. 

M/C 
Parts 

2 7 9 10 1 5 6 3 8 4 

4 1 1 1 1 0 0 0 0 0 0 

3 1 0 1 1 0 0 0 0 0 0 

9 1 1 1 0 0 0 0 0 0 0 

10 0 0 0 0 1 1 1 0 0 0 

8 0 0 0 0 0 1 1 0 0 0 

1 0 0 0 0 1 0 1 0 0 1 

6 0 0 0 0 0 0 0 1 1 0 

5 0 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 0 0 1 0 

2 0 0 1 1 0 0 0 0 0 0 

 

5.3. Performance measures: 

 

The performance of cluster formation methods can be 

evaluated either according to computational efficiency or 

according to clustering effectiveness (Chu and Tsai 1989). 

Clustering efficiency is normally measured in terms of 

program execution time, the amount of memory needed, 

and the complexity of the algorithm. In this research work, 

four measures have been selected because of their wide 

usage in the literature. 

5.3.1. Number of exceptional elements (PE): 

 

The number of off-diagonal positive entries 

(exceptional elements) in the final machine part incidence 

matrix can measure the quality of the cluster formation 

method. PE can be computed as 

 

PE = e0                                                                             (9)  

Where e0, is the number of exceptional elements or the off-

diagonal positive entries. 

5.3.2. Machine utilization (MU): 

  

MU indicates the percentage of times the machines 

within clusters (cells) are used in production. MU can be 

computed as (Chandrasekharan and Rajagopalan, 1986a)   
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(10) 

Where ed is the number of positive entries in the diagonal 

blocks, 

mk is the number of machines in the kth cell,  

nk is the number of parts in the kth cell, and  

C is the number of cells.  

The higher the value of MU, the better the machines is 

being utilized.       
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5.3.3. Grouping Efficiency (GE): 

   

GE is an aggregate measure that takes both the number 

of exceptional elements and the machine utilization into 

consideration. A convex combination of both terms is 

considered to reveal the relative importance of each term. 

GE can be defined as   
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(11) 

Where α is a weight; 0 ≤α ≤1, M is the total number of machines, 

N is the total number of parts, as a general rule, the higher the 
grouping efficiency, the better the clustering results. 

5.3.4. Grouping Efficacy (GC): 

 

GC overcomes the problems of selecting and the 

limiting range of GE. GC has the requisite properties like 

non-negativity, zero to one range and is not affected by the 

size of the machine-part matrix. GC, defined by Kumar 

and Chandrasekharan (1990) and Sandbothe (1998) is 

given as in equation 

 

e

ee
GC

0
  (12) 

 

Where eγ is the number of zeros in the diagonal blocks. 

 

5.4. Problem data source: 

 

The 36 data sets have been classified into three groups 

based on the number of machines (M), three groups based 

on the number of parts (N), and three groups based on the 

density level (D). Table 14 shows the value ranges of M, N 

and D for each group. The selected density range values 

are based on the selected data sets and specific 

implementation in the literature. Densities between 0.10 

and 0.30 represent the different scenarios adequately. 

 
Table 14: Value Ranges of Machines and Parts. 

No. Problem Source M N D 

1 Kumar et al. (1986)  30 41 0.104 

2 Chandrasekharan and Rajagopalan 

(1987)  

24 40 0.136 

3 Chandrasekharan and Rajagopalan 

(1987)  

24 40 0.135 

4 Chandrasekharan and Rajagopalan 

(1987)  

24 40 0.136 

5 Chandrasekharan and Rajagopalan 

(1987)  

24 40 0.136 

6 Chandrasekharan and Rajagopalan 

(1986a)  

20 35 0.193 

7 Randomly generated  20 35 0.200 

8 Randomly generated  20 35 0.204 

9 Randomly generated  20 35 0.215 

10 Randomly generated  20 35 0.211 

11 Harhalakis et al. (1990)  20 20 0.197 

12 Shafer and Rogers (1993b)  20 20 0.147 

13 Randomly generated  20 20 0.210 

14 Murugan and Selladurai (2007)  16 15 0.217 

15 Chan and Milner (1982)  15 10 0.306 

16 Chan and Milner (1982)  15 10 0.330 

17 Balasubramanian and Panneerselvam 

(1993)  

15 10 0.280 

18 Randomly generated  15 10 0.193 

19 Askin et al. (1991)  14 24 0.181 

20 McAuley (1972)  12 10 0.316 

21 Srinivasan et al. (1990)  10 20 0.245 

22 Randomly generated  10 20 0.195 

23 Askin et al. (1991)  10 15 0.326 

24 Mukhopadhyay and Golpalakrishnan 

(1995)  

10 10 0.240 

25 Randomly generated  10 10 0.190 

26 Arvindh and Irani (1994)  10 8 0.325 

27 Srinivasan and Narendran (1991)  8 20 0.381 

28 Kusiak et al. (1993) 8 9 0.236 

29 Randomly generated  8 9 0.194 

30 Mukhopadhyay et al. (1994)  7 11 0.270 

31 Randomly generated  7 11 0.194 

32 Mukhopadhyay et al. (1994)  7 9 0.412 

33 Kusiak and Cho (1984)  6 8 0.458 

34 Seifoddini (1989c)  5 18 0.470 

35 Mukhopadhyay et al. (1994)  5 18 0.511 

36  King and Nakornchai (1982)  5 7 0.400 

 

Table 15 shows the data set groups and factor ranges 

for the above problem sets and grouped into nine groups 

with three factors based on the number of machines. 

 
Table 15: Data set groups and factor ranges. 

 
 

5.5. Comparative studies with other approaches: 

 

The proposed ART-MOD-SLC cluster formation 

method has been designed and tested against MCF solution 

methods using the well-known cluster formation 

approaches on the selected data sets along with the real 

time manufacturing data. The ART-MOD-SLC is 

compared with four well-known cluster formation methods 

selected from the literature, namely ROC2, DCA, SLC and 

MOD-SLC. The comparison and evaluation are based on 

four different performance measures selected from the 

literature, namely Percentage of Exceptional Parts (PE), 

Machine Utilization (MU), Grouping Efficiency (GE) and 

Grouping Efficacy (GC).  

The four performance measures, PE, MU, GE, and GC 

are computed for each data set in each group of the nine 

groups. Table 16 summarizes the computational results of 

average PE values for each data group. Table 17 

summarizes the computational results of MU average 

values for each data group. Table 18 summarizes the 

computational results of average GE values and is an 
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aggregate measure that takes both the number of 

exceptional elements and the machine utilization into 

consideration. Table 19 summarizes the computational 

results of average GC values for each data group.  

From the results, the proposed ART-MOD-SLC 

approach has achieved the highest value of PE, MU, GE 

and GC and yields the best result towards the optimal 

performance for the entire GT problem and the results are 

highlighted and also presented graphically in figures 10 to 

15. 

 
Table 16: PE values for CF problems. 

 
 

 
Table 17: MU values for CF problems. 

 
 
Table 18: GE values for CF problems. 

 
 
Table 19: GC values for CF problems. 

 
 

5.6. Results and discussion: 

 

The Figures below show the number of exceptional 

elements (PE). 

 

 

 
Figure 10: PE Vs Cluster Formation Method. 
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Figure 11: MU Vs Cluster Formation Method. 
 

 

 
Figure 12: GE Vs Cluster Formation Method. 

 

 

 
Figure 13: GC Vs Cluster Formation Method. 
 

The following figures show the comparison of cluster 

formation methods. 

 

 
Figure 14: Cluster Formation Method Vs Performance Measures. 

 

 
Figure 15: Cluster Formation Method Vs Performance Measures. 

6. Conclusion 

In this research work, an ART1 neural network has 

been integrated with MOD-SLC approach and successfully 

implemented for the cell formation problems collected 

from the literature, including the real time manufacturing 

data. 

  

 Application of ART1 to machine-part matrix has been 

successfully demonstrated to form the clusters of a 

machine cell and part families. Thereafter machine 

and parts are arranged by Modified Single Linkage 

Clustering method (MOD-SLC).  

 It is observed that the quality of grouping solution is 

influenced by the sequence of machines or parts in 

initial machine part incidence matrix. The numbers of 

clusters are used to calculate the group efficiency.  



 © 2011 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5, Number 3  (ISSN 1995-6665) 211 

 Cluster validation is made after calculation of GE, 

PE, MU, and GC. Processing time does not increased 

significantly for large problems or complex 

conditions. ART-MOD-SLC achieved the higher 

value of grouping efficiency that yields better 

clustering results. 

 The results are compared with popular existing 

algorithms and found that the modified ART-MOD-

SLC solution is superior to others. The ART-MOD-

SLC gives parts and machine clusters and the number 

of exceptional elements.  

 The computational effort is very low in the ART-

MOD-SLC compared with all other algorithms and is 

suitable for large size of machine-part incidence 

matrix. 

 ART-MOD-SLC method has been tested against four 

MCF solution methods using the cluster formation 

approaches, namely ROC2, DCA, SLC, and MOD-

SLC and also demonstrated an evaluative and 

comparative analysis using four different 

performance measures namely percentage of 

exceptional elements, within cell machine utilization, 

grouping efficiency, and grouping efficacy.  

 The ART- MOD-SLC approach improves the average 

values of the four performance measures, PE, MU, 

GE and GC and the results are presented graphically. 

 The performance of the four cluster formation 

methods considered (ROC2, DCA, SLC, and MOD-

SLC) are poorer than the proposed ART-MOD-SLC 

approach.  

 From the graphical results, the Percentage of 

Exceptional Elements (PE) reduced by 10%, Machine 

Utilization (MU) has been increased by 3%, Grouping 

Efficiency (GE) has been increased by 2% and 

Grouping Efficacy (GC) increased by 5% than the 

earlier approaches considered. 
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